Data Analytics Training by Experts

;

Our Training Process

Data Analytics - Syllabus, Fees & Duration

  1. Learn Python Program from Scratch

    • Basic programming concepts
    • Object -oriented programming
    • Data types, variables, strings, loops, and functions
    • Software engineering using Python.
  2. Statistical and Mathematical Essential for Data Science

    • Collection, classification, and analysis of data
    • A foundational part of Data Science
    • Explain measures of central tendency and dispersion
    • comprehend skewness, correlation, regression, distribution
  3. Data Science with Python

    • Jupyter Notebook and PyCharm based lab environment
    • Machine Learning
    • Data visualization
    • Web scraping
    • Natural language processing
  4. Database

  5. Machine Learning

    • Mathematical and heuristic aspects
    • Hands-on modeling to develop algorithms
    • Advanced Machine Learning knowledge.
  6. Data Analytics with R:

    • Data wrangling
    • data exploration
    • data visualization
    • predictive analytics
    • descriptive analytics techniques
    • import and export data in R
    • data structures in R
    • various statistical concepts
    • cluster analysis
    • forecasting
  7. Visualization with Tableau

    • Data Visualization
    • combo charts
    • working with filters
    • parameters
    • sets
    • building interactive dashboards
  8. Visualization with Power BI

    • Data filtering
    • Data manipulations
    • understanding the patterns in data
    • create customized dashboards with powerful developer tools

Technologies Training:

  • Python:

    • Introduction to Python and Computer Programming
    • Data Types
    • Variables
    • Basic Input -Output Operations
    • Basic Operators
    • Boolean Values
    • Conditional Execution
    • Loops
    • Lists and List Processing
    • Logical and Bitwise Operations
    • Functions
    • Tuples
    • Dictionaries
    • Sets
    • Data Processing
    • Modules
    • Packages
    • String and List Methods
    • Exceptions
    • File Handlings
    • li> Regular expressions
    • the Object - Oriented Approach: Classes, Methods, Objects
    • Standard Objective Features; Exception Handling
    • Working with Files
  • R:

    • R Introduction
    • Data Inputting in R
    • Strings
    • Vectors
    • Lists
    • Matrices
    • Arrays Functions and Programming in R
    • Data manipulation in R
    • Factors
    • DataFrame
    • Packages
    • Data Shaping
    • R-Data Interface
    • Web Data and Database
    • Charts-Pie
    • Bar Charts
    • Boxplots, Histograms
    • LineGraphs
    • Mean
    • Median
    • Mode
    • Regression-Linear
    • Multiple
    • Logistic
    • Poisson
    • Distribution-Normal
    • Binomial
    • Analysis-Covariance
    • Time Series, Survival
    • Nonlinear Least Square
    • Decision Tree
    • Random Forestc
  • MySQL

    • MySQL – Introduction
    • Installation
    • Create Database
    • Drop Database
    • Selecting Database
    • Data Types
    • Create Tables
    • Drop Tables
    • Insert Query
    • Select Query
    • WHERE Clause
    • Update Query
    • DELETE Query
    • LIKE Clause
    • Sorting Results
    • Using Joins
    • Handling NULL Values
    • ALTER Command
    • Aggregate functions
    • MySQL Clauses
    • MySQL Conditions
  • Matplotlib:

    • Scatter plot
    • Bar charts
    • histogram
    • Stack charts
    • Legend title Style
    • Figures and subplots
    • Plotting function in pandas
    • Labelling and arranging figures
    • Save plots.
  • Seaborn:

    • Style functions
    • Color palettes
    • Distribution plots
    • Categorical plots
    • Regression plots
    • Axis grid objects.
  • NumPy

    • Creating NumPy arrays
    • Indexing and slicing in NumPy
    • Downloading and parsing data Creating multidimensional arrays
    • NumPy Data types
    • Array attributes
    • Indexing and Slicing
    • Creating array views copies
    • Manipulating array shapes I/O.
  • Pandas:

    • Using multilevel series
    • Series and Data Frames
    • Grouping
    • aggregating
    • Merge Data Frames
    • Generate summary tables
    • Group data into logical pieces
    • manipulate dates
    • Creating metrics for analysis
    • Data wrangling
    • Merging and joining
    • Data Mugging using Pandas
    • Building a Predictive Mode.
  • Scikit-learn:

    • Scikit Learn Overview
    • Plotting a graph
    • Identifying features and labels
    • Saving and opening a model
    • Classification
    • Train / test split
    • What is KNN? What is SVM?
    • Linear regression
    • Logistic vs linear regression
    • KMeans
    • Neural networks
    • Overfitting and underfitting
    • Backpropagation
    • Cost function and gradient descent, CNNs
  • Tableau

    • Tableau Architecture
    • File Types
    • Data Types
    • Tableau Operator
    • String Functions
    • Date Functions Logical Functions
    • Aggregate FunctionsvJoins in Tableau
    • Types of Tableau Data Source
    • Data Extracts
    • Filters
    • Sorting
    • Formatting
    • Adding Worksheets and Renaming Worksheet In Tableau
    • Tableau Save
    • Reorder and Delete Worksheet
    • Charts
    • dashboard.
  • Power BI

    • Power BI Architecture
    • Components
    • Power BI Desktop
    • Connect to Data in Power BI Desktop
    • Data Sources for Power BI
    • DAX in Power BI
    • Q & A in Power BI
    • Filters in Power BI, Power BI Query Overview
    • Creating and Using Measures in Power
    • Calculated Columns
    • Data Visualizations
    • Charts
    • Area
    • Funnel
    • Combo
    • Donut
    • Waterfall
    • Line
    • Maps
    • Bar
    • KPI
    • Power BI Dashboard

Download Syllabus - Data Analytics
Course Fees
10000+
20+
50+
25+

Data Analytics Jobs in Nizwa

Enjoy the demand

Find jobs related to Data Analytics in search engines (Google, Bing, Yahoo) and recruitment websites (monsterindia, placementindia, naukri, jobsNEAR.in, indeed.co.in, shine.com etc.) based in Nizwa, chennai and europe countries. You can find many jobs for freshers related to the job positions in Nizwa.

  • Data Analyst
  • Business Intelligence Analyst
  • Data Scientist
  • Data Engineer
  • Quantitative Analyst
  • Market Research Analyst
  • Operations Analyst
  • Healthcare Analyst
  • Supply Chain Analyst
  • Fraud Analyst

Data Analytics Internship/Course Details

Data Analytics internship jobs in Nizwa
Data Analytics The content of data analytics courses can vary, but they typically cover a range of topics related to collecting, analyzing, and interpreting data to extract valuable insights. A data analytics course is an educational program designed to teach individuals the skills and knowledge needed to work in the field of data analytics. Here are some common components of a data analytics course:. These courses are offered by various educational institutions, including universities, online platforms, and specialized training providers. Data analytics training involves acquiring the knowledge and skills needed to analyze and interpret data to make informed business decisions. Work on real-world projects, participate in online competitions (such as Kaggle), and continue learning to enhance your skills. Here is a step-by-step guide to help you get started with data analytics training: Remember that practice is essential in data analytics.

List of All Courses & Internship by TechnoMaster

Success Stories

The enviable salary packages and track record of our previous students are the proof of our excellence. Please go through our students' reviews about our training methods and faculty and compare it to the recorded video classes that most of the other institutes offer. See for yourself how TechnoMaster is truly unique.

List of Training Institutes / Companies in Nizwa

  • AIG | Location details: VG8P+5VG, Nizwa, Oman | Classification: Insurance company, Insurance company | Visit Online: | Contact Number (Helpline):
  • Schlumberger,Nizwa | Location details: RFQQ+V4M، طيمسا، Oman | Classification: Oil field equipment supplier, Oil field equipment supplier | Visit Online: slb.com | Contact Number (Helpline):
  • IndianSchoolNizwa | Location details: ISN, Indian School CBSE Affiliation No: 6130008, P.O. Box: 598, P.C. 611, Thymsa, Nizwa, Oman | Classification: School, School | Visit Online: isnizwa.org | Contact Number (Helpline): +968 25 449286
  • Omantel | Location details: VGRH+9W4, Nizwa, Oman | Classification: Telecommunications, Telecommunications | Visit Online: omantel.om | Contact Number (Helpline): +968 25 410444
  • LuLuHypermarket-Nizwa | Location details: Nizwa, Oman | Classification: Hypermarket, Hypermarket | Visit Online: luluhypermarket.com | Contact Number (Helpline): +968 25 415900
  • DHLNizwa | Location details: Nr. Suq Signal Soal area Nizwa OM، 611،, Nizwa, Oman | Classification: Shipping company, Shipping company | Visit Online: dhl.com | Contact Number (Helpline): +968 9136 1407
  • OmanOilServiceStation-Nizwa | Location details: Nizwa - Ibri Road، Nizwa, Oman | Classification: Gas station, Gas station | Visit Online: oomco.com | Contact Number (Helpline): +968 800 76626
  • Aramex | Location details: Nizwa, Main Road , Farq area , Opp Oman-tell Near Hungry Punny Restaurant , Beside Jeep Showroom Block no. 31, Bld # 3, Nizwa, Oman | Classification: Logistics service, Logistics service | Visit Online: aramex.com | Contact Number (Helpline): +968 9251 6272
  • WeatherfordNizwa | Location details: RFMQ+VJM، طيمسا، Oman | Classification: Engineer, Engineer | Visit Online: weatherford.com | Contact Number (Helpline):
  • بنكنزوىBankNizwa | Location details: VGHP+3WM, Nizwa, Oman | Classification: Bank, Bank | Visit Online: banknizwa.om | Contact Number (Helpline): +968 24 655002
  • Schlumberger,Nizwa | Location details: RFQQ+V4M، طيمسا، Oman | Classification: Oil field equipment supplier, Oil field equipment supplier | Visit Online: slb.com | Contact Number (Helpline):
  • TechnicalTrainingInstitute(TTIOman) | Location details: Nizwa, Oman | Classification: Training centre, Training centre | Visit Online: ttioman.net | Contact Number (Helpline): +968 7935 9553
  • Diam | Location details: VH72+CJF, Nizwa, Oman | Classification: Government office, Government office | Visit Online: paew.gov.om | Contact Number (Helpline): +968 25 219971
  • OmanOilServiceStation-AlMaamurah | Location details: Saad District, Nizwa-Ibri Rd, Al, Bahla, Oman | Classification: Gas station, Gas station | Visit Online: oomco.com | Contact Number (Helpline): +968 800 76626
  • TechnicalTrainingInstitute(TTIOman) | Location details: Nizwa, Oman | Classification: Training centre, Training centre | Visit Online: ttioman.net | Contact Number (Helpline): +968 7935 9553
  • BankMuscatNizwa-بنكمسقطفرعنزوى | Location details: 376 Fort, Br, Road, Nizwa, Oman | Classification: Bank, Bank | Visit Online: bankmuscat.com | Contact Number (Helpline): +968 24 795555
 courses in Nizwa
At that time, there have been best 3 colleges withinside the complete of the Sultanate of Oman, they all on the number one degree and eager about boys. The aims have been to offer standard number one schooling, to make bigger provision to elementary and secondary schooling, and to sell gender equality. To all intents and purposes, therefore, the united states of america became beginning with what became really a smooth slate in phrases of complete instructional provision. In reaction to those demands, the eye of the Ministry of Education in recent years has shifted farfar from worries approximately access (considering that ninety seven percentage of fundamental college-age Omanis are enrolled in schooling) closer to tries to qualitatively enhance and growth the relevance of the schooling device with the intention to put together our college students to fulfill the demanding situations of a knowledge-primarily based totally economic system. The Government of Oman invited the World Bank to collaborate with the Ministry of Education to adopt a study of the college schooling quarter to investigate the strengths and weaknesses of the prevailing device and to offer suggestions for destiny improvement. Within a length of forty years, the scenario has been absolutely transformed. The Ministry of Education is currently engaged in some of predominant reform tasks across the complete device. These developments, coupled with the Government`s coverage to “Omanize” the workforce, have supposed that the united states of america`s desires in phrases of schooling have dramatically changed. Education participation tiers in Oman at the moment are identical to or above the ones found in different Middle East and North Africa (MENA) countries. However, there are nevertheless continual problems regarding the high-satisfactory of scholar fulfillment that want to be addressed.

Trained more than 10000+ students who trust Nestsoft TechnoMaster

Get Your Personal Trainer